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ABSTRACT
Boussinesq-type wave equations involve nonlinearities and dispersion. In this paper
a Boussinesq-type equation with displacement-dependent nonlinearities is presented.
Such a model was proposed by Heimburg and Jackson (2005) for describing longitu-
dinal waves in biomembranes and later improved by Engelbrecht et al. (2015) taking
into account the microinertia of a biomembrane. The steady solution in the form of
a solitary wave is derived and the influence of nonlinear and dispersive terms over a
large range of possible sets of coefficients demonstrated. The solutions emerging from
arbitrary initial inputs are found using the numerical simulation. The properties of
emerging trains of solitary waves are analysed. Finally, the interaction of solitary
waves which satisfy the governing equation is studied. The interaction process is
not fully elastic and after several interactions radiation effects may be significant.
This means that for the present case the solitary waves are not solitons in the strict
mathematical sense. However, like in other cases known in solid mechanics, such
solutions may be conditionally called solitons.

KEYWORDS
elastic waves; lipids; mechanical behaviour, nonlinearities; dispersion; solitary
waves

1. Introduction

The celebrated wave equation which is based on the conservation of momentum,
models the motion with a finite speed. In order to account for accompanying phys-
ical phenomena, the wave equation must be modified. For conservative systems, the
Boussinesq-type equations are widely used. The original Boussinesq equation was de-
rived for surface waves on a fluid layer [1, 2] but nowadays such equations are used
also in solid mechanics [3]. The main features of Boussinesq-type equations are: (i)
bi-directionality (d’Alembert operator); (ii) nonlinearity of any order; (iii) dispersion
of any order (presence of space and time derivatives of the fourth order or higher
[3]. Beside fluid mechanics, there are many studies of such equations derived using
various physical assumptions [3–8, etc]. In solid mechanics, nonlinearity is caused by
the nonlinear stress-strain relation and the nonlinear strain tensor, i.e., physical and
geometrical nonlinearities are involved (see, for example, [9]). The governing equations
involve then ∂ui/∂xj type terms (i, j = 1, 2, 3), i.e., the displacement gradients enter
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the model. For example, the simple 1D equation reads

utt − c2
0(1 + kux)uxx = 0, (1)

where u = u1, x = x1, c0 is the velocity in the unperturbed state and k is the
nonlinear parameter. Here and further, the indices x and t denote the differentiation
with respect to the indicated variable. One could say that actually the effective velocity
ce is calculated like

c2
e = c2

0(1 + kux). (2)

The dispersive effects in solids are due to the geometry [6] or due to the microstruc-
ture [7, 10, etc]. Then terms like uxxxx, uxxtt etc. appear in governing equations. The
combined action of nonlinear and dispersive effects may give rise to solitary waves
[3, 11, 12, etc].

During the last decade the interest to mechanical waves in biomembranes has been
growing [13–15, etc]. The biomembranes have a special structure, made of lipids [13, 16]
and in this case nonlinearities are different from that in solids. Based on experimental
results, the nonlinearity in biomembranes can be accounted in the effective velocity ce
like [13]

c2
e = c2

0 + pu+ qu2, (3)

where p and q are coefficients, c0 is the velocity of the small amplitude sound wave
and u is the density change along the axis of the biomembrane. This means that
contrary to the gradient-type nonlinearity, the displacement-type nonlinearity appears
in governing equations for waves in biomembranes. The Heimburg-Jackson (HJ) model
[13], improved by Engelbrecht et al. [8] takes such nonlinearities into account together
with dispersive term(s). The governing equation is then of the Boussinesq-type and
may lead to the emergence of solitary waves.

In this paper, the improved Heimburg-Jackson model [8] is systematically studied in
detail needed for describing the possible emergence of solitary waves. After describing
the derivation of the governing Boussinesq-type equation (Section 2), the following
questions are analysed: (i) deriving the steady solutions to the governing equation
(Section 3); (ii) finding the solutions for an arbitrary input (Section 4); (iii) study-
ing the interaction of waves (Section 5). In this way, the existence of solitary waves
is shown, the emergence of trains of solitary waves is demonstrated, and finally, the
interaction of solitary waves shows whether the solitary waves are solitons in the clas-
sical sense. As it is well known, solitons interact with each other elastically without
losses like elementary particles and only the phase shifts show the interaction effects
[17–19]. In many physical systems the interaction is accompanied by radiation, i.e.,
the process is not fully elastic. In this case the solitary waves can only conditionally be
called solitons. The final remarks are presented in Section 6 where the special features
of solutions to this Boussinesq-type equation with displacement-dependent nonlinear-
ities are summarised. The analysis is wider than only the case of biomembranes and
includes many combinations of governing parameters.
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2. Derivation of the governing equation

The signal propagation in a nerve fibre is a complicated phenomenon. The nerve fibre
itself can be modelled as a tube filled with axoplasm and surrounded by the extracel-
lular fluid. The wall of the tube is made of a biomembrane [20]. The biomembrane is a
very special biological structure made of phospholipids with hydrophobic tails directed
to inside of the membrane, i.e., away from the intra- and extracellular fluid [16]. In
general, the lipid membrane represents a special biological microstructure with com-
plicated properties. The concentration of ions within and outside of a fibre is different
but the ion change can occur through the ion channels. These channels are closed at
the rest but can be opened under electrical or mechanical impact [16].

The electrophysiological model describing the propagation of an electrical signal
called the action potential was derived by Hodgkin and Huxley [21] and is based on
telegraph equations and on opening and closing the ion channels under the electrical
impact. However, this model cannot explain all the complex effects in the nerve fibres.
Experiments by Iwasa et al. [22] and Tasaki [23] have clearly demonstrated the swelling
of the surrounding biomembrane and the accompanying heat exchange. This means
that an action potential is accompanied also by a mechanical wave in the fibre wall.
A mathematical model governing such a wave is proposed by Heimburg and Jackson
[13, 24]. Their model is based on the wave equation, i.e., on the balance of momentum
and written in terms of density change ∆ρA = u in the longitudinal direction:

utt = (c2
eux)x. (4)

Two essential assumptions are made. First, it is assumed that the velocity ce of a
wave in a circular biomembrane is related to the compressibility of the lipid structure
and can be taken as in Eq. (3) (c2

e = c2
0 + pu + qu2) and the second assumption is

to add ad hoc higher order term to the governing equation −huxxxx responsible for
dispersion [13]. The governing equation is then

utt =
[
(c2

0 + pu+ qu2)ux
]
x
− huxxxx, (5)

where h is a constant. Equation (5) is a Boussinesq-type equation [3]. Heimburg and
Jackson [13] have demonstrated that Eq. (5) possesses a solitary pulse-type solution.
There are several further studies analysing such solutions [14, 15, 24, etc]. Equation
(5) has been improved by Engelbrecht et al. [8] in order to remove the discrepancy
that at higher frequencies the velocities are unbounded. Following the ideas from the
solid mechanics [7, 10] and supported by the Lagrangian formalism, the inertial term
is added to the governing equation:

utt =
[
(c2

0 + pu+ qu2)ux
]
x
− h1uxxxx + h2uxxtt, (6)

where h1 = h and h2 are dispersion coefficients.
The importance of the additional dispersion term h2uxxtt can be explained with

dispersion analysis. It has been shown in [8] that in case of only one dispersion term
h1uxxxx (Eq. (5)), the phase velocity is expressed as c2

ph = c2
0 + h1k

2 and it tends
to infinity as the wave number k is increased. In case of the second fourth order
mixed dispersion term h2uxxtt the propagation velocity is bounded as it can be seen in
Fig. 1. The bounding velocity c1 for high frequency harmonics is defined by the ratio
of the dispersion coefficients (c2

1 = h1/h2) and the coefficient h2 is related to the rate
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Figure 1. Phase speed curves for Eq. (6) in case of c1/c0 = 0.9 (left figure) and c1/c0 = 1.1 (right figure).

h2/c20 = 1 (dashed), h2/c20 = 0.4 (dotted line) and h2/c20 = 0.15 (solid line) in both figures.

of change of the velocity from low frequency to the high frequency domain. Higher
valued coefficient h2 means that the transition from the low frequency speeds to the
higher frequency speed is more rapid (see Fig. 1). We also note that c1/c0 < 1 means
normal dispersion, i.e., the higher frequency harmonics travel slower than the lower
frequency harmonics and c1/c0 > 1 means anomalous dispersion.

From the viewpoint of solid mechanics the importance of the fourth order mixed
derivative is not surprising as it is well known that the presence of only spatial deriva-
tives in the governing equation can lead to instabilities [5]. Moreover, the mixed fourth
order derivative is related to the inertia of the microstructure and it is shown by Mau-
rin and Spadoni [25] that both dispersive terms arise naturally as a result of proper
modelling and this has also been demonstrated experimentally [26].

The focal point of this paper is the full analysis of Eq. (6). Further it is convenient
to use the dimensionless form of Eq. (6), which will take the form

UTT = (1 + PU +QU2)UXX + (P + 2QU)U2
X −H1UXXXX +H2UXXTT , (7)

where X = x/l, T = c0t/l, U = u/ρA and P = pρA/c
2
0, Q = qρ2

A/c
2
0. Here l is a certain

length, for example, the fibre diameter.
Equation (7) must be solved under initial and boundary conditions formulated in

the dependent variable U .

3. Steady solutions

In this Section we focus our analysis on undistorted travelling waves in the form

V = V (ξ), ξ = X − cT, (8)

where V is some function and c is dimensionless wave velocity [18, 27]. Substituting
this into Eq. (7) we get

c2V ′′ = ((1 + PV +QV 2)V ′)′ −H1V
′′′′ +H2c

2V ′′′′. (9)

Integrating Eq. (9) twice we get after some rearranging

(H1 −H2c
2)V ′′ = (1− c2)V +

1

2
PV 2 +

1

3
QV 3 +Aξ +B, (10)
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where A and B are constants of integration. Since we are looking for solitary wave
solutions, then we may add boundary conditions that V, V ′, V ′′ → 0 as X → ±∞ and
therefore A,B = 0 [18, 27]. Now the Eq. (10) is multiplied by V ′ and integrated to get

(H1 −H2c
2)(V ′)2 = (1− c2)V 2 +

1

3
PV 3 +

1

6
QV 4, (11)

which can be rewritten as

(H1 −H2c
2)(V ′)2 = Φeff (V ), (12)

where

Φeff (V ) = (1− c2)V 2 +
1

3
PV 3 +

1

6
QV 4 (13)

is a fourth-order ‘pseudo-potential’. Note that for the classical KdV equation the
‘pseudo-potential’ is of the third order [18]. While the KdV equation involves the
quadratic nonlinearity then taking also the cubic nonlinearity into account, the result
is an expanded KdV equation called the Gardner equation [28]. For the Gardner
equation the ‘pseudo-potential’ is of the fourth order which leads to a solitonic solution
[29]. The difference between KdV-type evolution equations and Boussinesq-type wave
equations is explained earlier [30].

The existence of solitary waves can be analysed by either investigating the behaviour
of the ‘pseudo-potential’ (13) or the phase portrait of Eq. (11). In case of H2 = 0 the
‘pseudo-potential’ (13) also applies for the Heimburg-Jackson model (5) and has been
analysed by Lautrup et al. [31] for a particular set of parameters that were determined
experimentally and are relevant for the solitary wave propagation in biomembranes
(P < 0, Q > 0). Here the analysis is more general and the signs of the parameters P
and Q are not fixed.

The four zeros of the polynomial (13) are

V1,2 = 0 and V3,4 =
P

Q

(
−1±

√
1− (1− c2)6Q

P 2

)
. (14)

If c2 < 1 and H1 − H2c
2 > 0 (or the other way around) then the double zero at

V1,2 = 0 indicates the saddle point, which is minimal requirement for the existence of
solitary waves [18, 27]. The following analysis can be divided into two parts: the cases
of H1 −H2c

2 > 0, which has also been analysed previously [30] and H1 −H2c
2 < 0.

Attention is paid to the signs of P and Q which govern the structure of solutions.
(i) H1 −H2c

2 > 0
The case of Q > 0. For this case the analysis is pretty straightforward. It can

be deduced from aforementioned restrictions and from Eq. (14) that in this case the
additional condition for the velocity c is

1 > |c| >

√
1− P 2

6Q
(15)

which means that in case of Q > 0 and H1 − H2c
2 > 0 the solitary waves governed

by the Eq. (7) will always travel slower than the low frequency sound. This is in good
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Figure 2. Shape of the ‘pseudopotential’ (13) and phase portrait of Eq. (11) in case of Q > 0. Here c = 0.8,
Q = 40, |P | = 10, H1 = 4, while H2 = 5 for the middle panels and H2 = 0 for the bottom panels. Homoclinic

orbit is shown in blue.

agreement with the actual pulse propagation in biomembranes [13, 31].
The ‘pseudopotential’ (13) and the corresponding phase portrait for this case have

been plotted in Fig. 2 for P < 0 (left column) and for P > 0 (right column), respec-
tively. The ‘pseudopotential’ (13) is plotted in the top row and the phase portraits for
the case H2 6= 0 in the middle and for the case H2 = 0 is plotted in the bottom row
for reference. It is clearly seen that the cases of H2 6= 0 and H2 = 0 are topologically
equivalent, but the changes in the derivative V ′ is clearly seen.

The existence of solitary wave solution requires that Φeff (V ) has a local minimum
at V = 0 with at least one local maximum next to it (Figs 2a,b). Alternatively one
can study the phase portrait (Figs 2c,d): solitary wave solutions exist when a saddle
point and a homoclinic orbit exists (shown in blue). The amplitude of the solitary
wave in both cases is determined by V3. It is clear that while the magnitude of the
amplitude of a solitary wave depends on the ratio of the parameters P and Q together
with the velocity c, the sign of the amplitude is determined only by the parameter P :
in case of P < 0 positive solitary wave emerges and in case of P > 0 the amplitude
will be negative. It can also be shown that higher values of c result in lower amplitudes
meaning that the lower amplitude solitary waves travel faster as it has been shown
earlier [32, 33].

The case of Q < 0 is shown in Fig. 3, where it can be seen that the behaviour of
the ‘pseudopotential’ and the phase portrait is significantly different from the case of
Q > 0, H1 −H2c

2 > 0. Since there are two regions where Φeff (V ) > 0, two solitary
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Figure 3. Shape of the ‘pseudopotential’ (13) and phase portrait of Eq. (11) in case of Q < 0. Here c = 0.8,
Q = −130, |P | = 8, H1 = 4 and H2 = 5. Homoclinic orbit for solution (17) is shown in blue.

waves with opposite polarities can coexist. The condition for the velocity c is

1 > |c| > 0 (16)

meaning that also in this case the solitary wave travels slower than the speed of the
low frequency sound. As in case of Q > 0, here also the magnitude and the sign of
the amplitude is determined by the parameters P , Q and c and the higher velocities
c result in larger negative amplitudes.

Recalling that the analytical solution of Eq. (7) is [30, 34]

u(ξ) =
6(c2 − 1)

P (1 +
√

1 + 6Q(c2 − 1)/P 2 cosh(ξ
√

(1− c2)/(H1 −H2c2)))
, (17)

where ξ = X−cT and c is the velocity of the solitary wave, the solitary wave solutions
for the given cases are plotted in Fig. 4 where the solid lines represent the case of
H2 6= 0 and the dashed represents the case of H2 = 0, which is the original Heimburg-
Jackson equation (5). We also note that in case of Eq. (17) only solitons with amplitude
V3 is realised for both cases.

In addition, it can be seen in Figs. 2 and 3 that in addition to the homoclinic
orbits also periodic orbits exist and such solutions can arise from the suitable initial
conditions. Such a situation will be discussed in Section 4.

Although solitary waves in case of Q < 0 and H1 − H2c
2 > 0 exist only when

0 < c < 1, periodic solutions to Eq. (11) also exist when

1 < |c| <

√
1 +

∣∣∣∣P 2

6Q

∣∣∣∣. (18)

This case is demonstrated in Fig. 5 where it can be seen that in this case ‘pseudopo-
tential’ (13) is positive between the points V3 and V4 and a stable orbit exists (shown
in blue) which means an existence of a periodic solution. What is interesting is that
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Figure 4. Solitary wave solutions of Eq. (7) in case of H2 6= 0 (solid line) and H2 = 0 (dashed line). Here
|P | = 16,|Q| = 80 (top row) and |P | = 8,|Q| = 130 (bottom row); c = 0.8, H1 = 2, H2 = 5 for all plots.

Figure 5. Emergence of a periodic wave in case of Q < 0, H1 − H2c2 > 0 and c > 1: the shape of the

‘pseudopotential’ (a) and the corresponding phase portrait (c). For (b) the parameters are c = 1.2, Q = −80,

P = 18, H1 = 2, H2 = 1. For (d) H2 = 20; other parameters are same as in (b). Stable orbit is shown in blue.
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Figure 6. The effect of the second dispersive term H2UXXTT on the width of a solitary wave. Here P = −10,

Q = 40, H1 = 2; (a)H2 = 0, (b)H2 = 2, (c)H2 = 4 and (d)H2 = 6.

Figure 7. Emergence of a periodic wave in case of H1−H2c2 < 0: the shape of the ‘pseudopotential’ (a) and

the corresponding phase portrait (c). For (b) the parameters are c = 0.8, Q = 40, P = −10, H1 = 4, H2 = 9.
For (d) H2 = 20; other parameters are same as in (b). Stable orbit for solution (17) is shown in blue.
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Figure 8. Existence of solitary waves in case of H1 − H2c2 < 0 and c > 1. Here c = 1.1, Q = 40, P = −3,
H1 = 4 and H2 = 5 (left column) and c = 1.2, Q = −35, P = 10, H1 = 4 and H2 = 5 (left column). Homoclinic

orbit for solution (17) is shown in blue.

the phase portrait in this case looks similar to Fig. 3c only it has been slightly shifted
to the right and the higher amplitude part is realised.

It can also be seen in Figs 2, 3 and 4 that in the case of the second dispersion
coefficient H2 a more localised solution is obtained: the greater value of the quantity
V ′ means the steeper slope (and hence the smaller width) of the solitary wave. The
effect of the dispersive term H2 on the width of a solitary wave is demonstrated in
Fig. 6, where it can be seen that higher values of H2 result in more localised solutions.

(ii) H1 −H2c
2 < 0

Since Eq. (11) can be thought of as conservation of ‘pseudoenergy’, then if condition
H1 − H2c

2 < 0 is satisfied then also Φeff has to be negative. In case of Q > 0 the
condition H1 − H2c

2 < 0 means that periodic solutions emerge even in the case of
c < 1 as it is seen in Fig. 7. Here also the periodic solution oscillates between the
values V3 and V4 (shown in blue in Fig. 7), which corresponds to the region where
Φeff (V ) < 0 as it can be seen in Fig. 2a. Similar result is obtained when P > 0, only
with negative amplitude.

In case of c > 1 and Q > 0 the ‘pseudopotential’ will only have regions Φeff < 0
and in case of H1 − H2c

2 < 0 a solitary wave with amplitude V3 exists (Fig. 8a,c).
Similarly, in case of c > 1 and Q < 0, a solitary wave with amplitude V3 exists
(Fig. 8b,d). Like in previous cases the structure of the phase portrait depends on the
sign of the coefficient Q and the sign of V3 (amplitude of the solution) depends on the
sign of the coefficient P . Unlike in case of H1 − H2c

2 > 0 where smaller amplitude
solitary waves travel faster, in case of H1−H2c

2 < 0 the higher amplitude waves travel
faster. Also recall that if H1 −H2c

2 > 0 then periodic solution exists with the same
coefficients(see Fig. 5).

Last case we mention is H1−H2c
2 < 0, c < 1 and Q < 0 when no solitonic solutions

exist.
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4. Solutions emerging from arbitrary initial conditions

In the present paper we use the pseudospectral method (PSM) to solve the governing
equation (7) under localised initial conditions demonstrating the influence of param-
eters P,Q,H1 and H2 on the evolution of solutions. The PSM is a well established
method which is used for solving PDE’s and ODE’s on regular basis. The advantages
and disadvantages of the PSM are well explored in the literature [35, 36]. Here two
points are worth of highlighting: (i) the PSM requires one to use periodic boundary
conditions, (ii) the governing equations have to be in a suitable form for applying
the PSM with time derivatives on the left hand side and spatial derivatives on the
right hand side of the equation. The first point is not a problem, however, taking a
look at Eq. (7) it is evident that we have a mixed partial derivative term UXXTT . We
use a change of variables for transforming the governing equation (7) for allowing the
application of the PSM [8, 32, 33]. The basic idea of the PSM is to find the spatial
derivatives by making use of the properties of the Fourier transform and then solve
the resulting ODE with respect to time derivative by making use of the commonly
available schemes for numerical solving of the ODE’s.

For initial and boundary conditions for the systematic analysis we use a pulse–
type localised initial condition in the form of sech2-type profile: U(X, 0) =
Uosech2BoX, U(X,T ) = U(X + 2kmπ, T ), m = 1, 2, . . . , where k = 12, i.e., the
total length of the spatial period is 24π. Here the amplitude and the width of the ini-
tial pulse are Uo = 1 and Bo = 1. The initial phase velocity is U(X, 0)T = 0 meaning
that the initial condition splits into two pulses propagating in the opposite directions.
Some examples are provided using different combinations of parameters in which case
the used parameters are noted separately. Although the initial condition is strictly
speaking not a periodic function and first derivatives jump across the boundary point,
the numerical error using the PSM with such a periodic boundary condition is small.
This is clearly demonstrated in the detailed analysis of the applicability of the PSM
[37].

The calculations are carried out with the Python package SciPy [38] with Python
interface to the ODEPACK FORTRAN code [39] for the ODE solver.

In addition to the formation of solitary waves a number of different waveprofile
regimes exist for the solutions of the governing equations (7) depending on the param-
eters but also on the initial conditions. To name the ones investigated previously:
(i) solitary waves (single or as a part of solitary wave train, see Figs 9,10);
(ii) Airy or reverse Airy like oscillatory structures (see Fig. 9);
(iii) hybrid solution where part of the initial pulse evolves into a train of solitary waves
and remainder of the initial pulse forms an oscillatory structure [32–34].
From the viewpoint of nerve pulse propagation the most interesting one is the soli-
tary wave solution, however, the rest of the solution types can not be ignored either
as these might be relevant somehow for either nerve pulse propagation or some kind
of pathologies. It should be emphasised that not only the equation parameters are
important in determining what kind of solution evolves from the initial excitation
but also the character of an initial excitation is important. As an example see Fig. 9
where some solutions corresponding to the different parameters and initial condition
amplitudes are presented. Depending on the dispersion type the initial excitation sign
determines whether the emerging wave structure is composed of solitary pulses or
Airy or reverse-Airy type oscillatory packet under the parameter combination used in
Fig. 9. Another interesting phenomenon which must be mentioned is the case where
smaller amplitude solitary waves can travel faster than the high amplitude ones as
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can be seen in Fig. 10. Under the suitable parameter combinations it is possible to
observe solutions where both negative and positive amplitude solitary waves can exist
simultaneously and if the smaller amplitude solitary waves travel faster then the larger
negative amplitude solitary waves travel even faster. However, this is not an universal
symmetry but needs the right ratio of parameters. The most common solution type
seems to be an oscillatory structure with few solitary pulses where some part of the
initial pulse energy is sufficient to form one or more solitary pulses and the remainder
forms an oscillatory trail either in front or behind (depending of the dispersion type)
of the propagating solitary waves.

In Fig. 11 an example of contour plots with isoline interval of 0.05 from −0.4 to +1
for the amplitude is presented.

In addition we are tracking waveprofile peak trajectories by finding the exact local
maxima of the wave profiles by making use of the properties of the Fourier transform
[37] (reconstructing the wave profile from the Fourier spectrum to minimise inaccura-
cies from using the discrete grid) for finding the exact spatial coordinates of the pulse
peaks at each time step for the purposes of finding the waveprofile velocities. Following
observations follow from such an analysis:
(i) the dispersion parameters have a strong effect on the evolution of the wave profiles
– the main pulse velocities are clearly different depending on the dispersion param-
eters and in addition the dispersion type determines on which side (relative to the
propagation direction) the secondary wave structures emerge from the main pulse. In-
creasing the parameter H1 increases the main pulse propagation velocity as predicted
by dispersion analysis [32];
(ii) The nonlinear parameters P and Q have some influence on the waveprofile prop-
agation velocities. In the case of the normal dispersion (c1/c0 < 1) increasing the
nonlinearity leads to the slower propagation velocity for the wave profiles. In the case
of the anomalous dispersion (c1/c0 > 1) the main pulse velocity remains almost the
same, however, the effect is more significant for the secondary oscillatory structures
meaning that in the case of higher nonlinear parameters the secondary structures have
propagated at higher velocity. This is in agreement with previous results where it has
been demonstrated that due to the uncommon (in the context of Boussinesq type
equation) nonlinear terms certain parameter combinations can exist where the smaller
amplitude solitary waves propagate faster than the higher amplitude ones [33].

Next, let us take a more detailed look how the the nonlinear and dispersive pa-
rameters influence the observable quantities of the wave profiles under the positive
and negative initial conditions. We observe the speed of the peak of the main pulse.
We track the coordinates of the peak of the main pulse by reconstructing the wave-
profile shape from the full Fourier spectrum at each time step. Parameters P and
Q change from −0.9 to +0.9 with the step size of 0.1 and for dispersion related pa-
rameters H1 and H2 three combinations are recorded – an normal dispersion case
(H1 = 0.3, H2 = 0.7), ‘balanced dispersion’ case (H1 = H2 = 0.5) and anomalous
dispersion case (H1 = 0.7, H2 = 0.3).

The notation of ‘balanced dispersion’ needs some clarification as it is not in common
use like anomalous and normal dispersion type are. In essence it is a a situation where
two dispersion terms in governing equation have opposite signs and their influence is
balanced resulting only in slight (almost unnoticeable) dispersion in wave profiles. It
must be stressed that this is not a dispersionless case.

Although for biomembranes the nonlinear parameters fulfil the conditions P <
0, Q > 0 [13], from the viewpoint of general analysis the other variants are also
possible. The case P < 0, Q > 0 leads to following conclusions:
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Figure 9. Waveprofile plots in the normal (left, T = 1500) and anomalous (right, T = 1700) dispersion cases

for the positive (solid black line) and negative (blue dashed line) initial condition amplitudes. Waveprofile
propagation direction is from left to right. Parameters: Uo = ±1, Bo = 1/8, k = 128, n = 1024, co = 1,

P = −0.1, Q = 0.01, H2 = 0.5 and H1 = 0.28125 (normal dispersion), H1 = 0.78125 (anomalous dispersion).
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Figure 10. Waveprofiles comparison plot (left) at T = 1750 for the negative (blue dashed line) against positive
(black solid line) initial condition amplitude. Lower amplitude solitary waves propagating faster. Direction of

propagation from left to right. Parameters: P = −0.1, Q = 0.05, H1 = 0.5, H2 = 0.5, k = 128, n = 1024,

Uo = ±1, Bo = 1/8, co = 1, T = 0 . . . 1750. Example of evolved solitary wave train is plotted on the right [33].
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Figure 11. The waveprofile contour plots for P = −0.1, Q = 0.1 and normal dispersion (H1 = 0.3, H2 = 0.7,

left) and anomalous dispersion (H1 = 0.7, H2 = 0.3, right) cases. Positive initial amplitude. Amplitude isoline
interval 0.05 from −0.4 to +1, colourmap from blue (negative) to red (positive). Time T on vertical axis.

Normal dispersion case. The negative amplitude initial condition leads to a greater
main pulse velocity than the positive amplitude initial condition. Under the both initial
condition signs decreasing the nonlinear parameter Q (towards the zero) leads to a
small decrease of the main pulse velocity. In the case of the negative amplitude initial
condition the main pulse amplitude is greater than in the case of the positive amplitude
initial condition and the observed oscillations are larger for the case with positive initial
amplitude than in the case with the negative initial amplitude. Increasing parameter
P leads to decrease in the main pulse velocity in the case of the negative amplitude
initial condition while in the case of the positive initial amplitude the main pulse
velocity remains the same. Increasing parameter P towards zero leads to marginally
greater amplitude for the main pulse in the case of negative amplitude initial condition
while in the case of positive initial amplitude the main pulse amplitude is unaffected
by the changes in the nonlinear parameter P . The oscillatory structure magnitude is
unaffected in the normal dispersion case.

Anomalous dispersion case. The main pulses propagate with velocity greater than
one under both of the considered initial condition signs, however, the main pulse am-
plitudes and associated oscillatory structures are different. Increasing the parameter Q
leaves the observed propagation speed the same but decreases the observed main pulse
amplitude and leaves the observed oscillatory structures about the same. Increasing
the parameter P does not affect the main pulse velocity significantly in the considered
dispersion case regardless of the sign of the initial amplitude. However, increasing the
nonlinear parameter P , the main pulse amplitude will be decreased and the amplitude
of the oscillatory structures will be increased under the both considered signs of the
initial condition.
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Figure 12. The time slice plots for the case H2 = 0 Eq. (5). The solitary wave solution (top) and interaction

of counterpropagating solitary waves (bottom).

The other cases are analysed in detail in [40].

5. Interaction of solitons

In general, a soliton can be described as a stable particle-like state of a nonlinear
system [41]. Another way of describing the phenomenon we call soliton is through
its properties. A soliton is a wave in the nonlinear environment that (i) has a stable
form, (ii) is localised in space and (iii) restores its speed and structure after interaction
with another soliton [18, 42]. Solitons emerge when there is a balance in the system
between dispersive and nonlinear effects. In essence it can be said that solitons are
nonlinear waves that behave between interactions like linear waves. A solitary wave is
usually a wave in the nonlinear environment where all the key properties of solitons are
not strictly fulfilled. For example, if the interaction between two waves is not entirely
elastic (or it is not possible to observe the interaction) or if the form of the wave is not
sufficiently stable in time, then the wave is often called a solitary wave to distinguish
it from the soliton.

In Fig. 12 one can see the HJ model (5) solitary wave propagation (top) and inter-
action (bottom). The parameters are the same as in Section 3 except H2 = 0. From
Fig. 12 it is clear that while the single HJ pulse is stable it is strictly speaking a soli-
tary wave, not a soliton, because the interaction with another such wave is not elastic
as there is significant radiation even during the first interaction event and the shape
of the waveprofile is not properly restored after the interaction. However, it should
be noted that the parameter combinations can exist where the solitary wave solutions
can be relatively stable with almost no radiation.

The ‘time slice’ plot used in Fig. 12 is useful for giving an overview ‘at a glance’ of
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Figure 13. Contour plots of interactions of solitonic solutions. Parameters c = ±0.99, P = −10, Q = 40,

H1 = 1, H2 = 0 (left) and H2 = 0.75 (right).

the evolution of a solution in time. Spatial coordinate is on the horizontal and time
on the vertical axis. Due to the periodic boundary conditions anything moving out of
the frame on the left enters the frame on the right.
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Figure 14. Waveprofile plots (left) and corresponding phase plots (right) at T = 770 after five interactions.
Parameters c = ±0.99, P = −10, Q = 40, H1 = 1. Only a waveprofile propagating to the left is shown.

The interaction of single solitary waves depends on the parameters of the model and
consequently, on the dispersion type (normal, anomalous). We start with the following
set of parameters: c = ±0.99, P = −10, Q = 40, H1 = 1, H2 = 0, H2 = 0.25, H2 = 0.50
and H2 = 0.75. In Fig. 13 one can see the interactions when the parameter H2 = 0
(left) and when H2 = 0.75 (right) – are remarkably similar and non disruptive with
the main difference being that the solitonic waveprofiles are more localised if H2 6= 0.
In this case the interactions have almost no radiation (negligible radiation two orders
of magnitude smaller than the main pulse amplitude at ≈ 10−5). Amplitude isolines

16



 X

 T

0 100 200 300
0

100

200

300

400

500

600

 X
 T

0 100 200 300
0

100

200

300

400

500

600

Figure 15. Contour plots of interactions of solitonic solutions. Parameters c = ±0.8, P = −10, Q = 40,

H1 = 4, H2 = 0 (left) and H2 = 5 (right).

are separated by 0.001 from 0.001 to 0.013 in Fig. 13.
In Fig. 14 waveprofiles and corresponding phase plots after the five interaction

events (T > 700) are presented. The solitonic waveprofiles corresponding to higher
values of H2 are more localised as expected (the waveprofile in Fig. 14 is propagating
to the left). The small distortions to the waveprofiles are easier to spot in phase plots
(right), in particular the small radiation close to zero which is noted is two orders of
magnitude smaller than the main pulse under the used parameter combination.

Let us return to a parameter set presented in Section 3 for the analytical solution.
It turns out that there is also a possible scenario where the solitonic solutions with
the additional dispersive term are more stable through interactions than the solitonic
solutions if parameter H2 = 0. In Fig. 15 the case H2 = 0 is presented in the left and
the case H2 = 5 in the right. The amplitude isolines are separated by 0.02 from 0.02
to 0.3. It is clear that under the parameter set used in Figs 12 and 15 the solitonic
waves corresponding to H2 = 0 have greater amount of radiation than the case H2 = 5
which is relatively stable in comparison throughout interactions. Neither of the cases
can be considered solitons in the strict mathematical case [18] as in both cases there
is significant enough radiation after only three interactions. While unrelated to the
mechanics of soliton interactions it is interesting to remark that the used numerical
algorithm performs approximately three times faster if H2 6= 0.

6. Final remarks

The systematic analysis of solutions to the special Boussinesq-type equation with
the displacement-dependent nonlinearities has revealed several interesting phenom-
ena. The analysis is focused on Eq. (6) (or its dimensionless form (7)) which is the
improved Heimburg-Jackson model for describing the longitudinal wave process in
biomembranes. Like every wave equation it describes the process generated by initial
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and/or boundary conditions expressed in terms of the dependent variable. Here the
variable under consideration is the change of the density in the longitudinal direction.
In terms of this variable the existence of solitary solutions is demonstrated, the emer-
gence of trains of solitary pulses is shown and the properties of emergence analysed,
and the interaction of single solitary waves and trains studied. We stress that the
conventional wave propagation theory involve deformation-dependent nonlinearities
while here the governing nonlinear wave equation involves displacement-dependent
nonlinearities.

The analysis can be summarised with following conclusions:

• The improved model (Eqs. (6), (7)) removes the discrepancy that at higher
frequencies the velocities are unbounded (see Fig. 1);
• The additional dispersive term uxxtt with the coefficient h2 (or H2 in the di-

mensionless form) in addition to the ad hoc dispersive term uxxxx [13] describes
actually the influence of the inertiality of the microconstituents (lipids) of the
biomembrane. This corresponds to the understandings of continuum mechanics
of microstructured solids [10] and is demonstrated also experimentally [26]. This
term regulates the width of the solitary pulse (see Fig. 6) and such an effect can
be used for determining the value of h2 from experiments. It also determines how
fast the transition from the low frequency speeds to the high frequency speeds
occurs (see Fig. 1);
• The fourth-order pseudopotential (13) involves several solution types of solitary

waves and under certain conditions (Q > 0, H2 >> H1) an oscillatory solution
exists (see Fig. 7);
• Soliton trains can be emerged from an arbitrary initial condition. These results

were obtained by numerical simulation by using the pseudospectral method [37].
Depending on the signs of coefficients Q and P , the nonlinear effects start to
influence the emergence either from the front or from the back of the propagating
pulse (see Fig 10). For the case of a biomembrane one has Q < 0, P > 0
and the train emerging from a positive input starts with smaller solitons which
travel faster than the bigger ones. This is different from the conventional case of
nonlinear evolution equations (the KdV equation, for example). In the case of
a negative input, the train is headed by bigger solitons which travel faster (see
Fig. 10). It has been shown that there are several wave types possible: solitary
waves (Fig. 9), oscillatory (Airy-type) waves (Fig. 9), and hybrid solutions.
• The interaction of solitary waves is not fully elastic (see Figs 13, 15) which shows

that these solitary waves are not solitons in the strict sense [18]. However, like
in other Boussinesq-type equations [3, 12], the radiation effects accompanying
every interaction start cumulating rather slowly and the interacting solitons keep
their shape for a rather long time. It gives the ground to call emerging solitary
waves modelled by Eq. (6) (or Eq. (7)) solitons like it is done in other physical
cases [11].

Biological structures as a rule have high complexity because the macrobehaviour
is strongly influenced by the embedded microbehaviour. Mathematical modelling is a
tool not only for describing biological processes and performing experiments in silico
but to understand the process. The behaviour of biomembrane is an excellent example
how the microstructure (lipids) of a membrane has a direct impact on wave phenomena
along the membrane. The analysis of the governing equation (6) (or Eq. (7)) presented
above demonstrates the richness of the model from the viewpoint of mathematical
physics and opens the ways for physiological experiments concerning the properties of
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biomembranes.
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